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Abstract
The microscopic mechanism for thermodiffusion or the Ludwig–Soret effect is
investigated for a single charged colloidal particle. For the specific example of
a charged permeable membrane, the different forces arising from the interplay
between electrostatic interaction and entropy are identified and their magnitudes
are calculated in both no-salt and salt-saturated limits. The competition between
these forces, which is controlled by the salt density, is shown to decide the
direction of motion for the colloids.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

A temperature gradient applied to a fluid mixture usually causes relative transformation of its
components (i.e. some components become denser in the hotter region and some in the colder
one). This phenomenon, known as thermophoresis or the Ludwig–Soret effect, has been
known of for about 150 years [1, 2]. Although it has been well established in the framework of
non-equilibrium thermodynamics [3] and many observations have been made on it (in binary
fluids, colloidal suspensions etc), its microscopic nature is still unclear [4].

In 1981, Ruckenstein suggested a mechanism for thermophoresis in charged colloidal
solutions [5]. Charged colloids are known to be screened by an ionic double layer around
them. Considering that the free energy stored in this layer could be thought of as a surface
tension, he proposed that this layer could exert a force on the colloid if it is distorted due to the
presence of a temperature gradient. He calculated the velocity of the corresponding motion,
which he found to be always towards the colder side [5]. Recently his idea was tested very
successfully for charged micelles in water with added salt [6]. However, there also exist other
experiments with completely different results. For example, Lenglet et al who studied the
Soret effect in magnetic colloids observed charged colloids which went to the hotter side [7].
This observation disagrees with Ruckenstein’s prediction not only in value but also in sign.

Here, we attempt to study this phenomenon by explicitly solving the problem in a
simpler geometry. We consider a charged permeable membrane (CPM) and the corresponding
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Figure 1. The schematics of the system.

counterions in a temperature gradient, with and without added salt (see figure 1). We find
an electric force that is always towards the hotter region and an osmotic stress that is always
towards the colder one. The competition between the two decides the direction of the membrane
motion. In the no-salt regime, the electric force is found to dominate the osmotic one and pulls
the membrane to the hotter region. Addition of salt, however, decreases the electric force and
increases the osmotic stress. For a specified salt density the two forces balance each other and
the velocity changes sign, as shown in figure 2.

2. The model

The membrane is assumed to have a surface charge uniformly distributed on its surfaces, with a
surface charge number density of σ . To make it permeable, we assumed channels that connect
the two sides. For evaluating the different forces, we need to know the density profiles of the
different ion types in the presence of temperature gradient. Let us denote the number density
and valence of the ion of type i by Ci and zi , respectively. These profiles can be calculated
by solving the Poisson equation −ε∇2� = −4πe

∑
i zi Ci for the electrostatic potential �,

together with the continuity equation ∂t Ci + ∇ · Ji = 0, where the current is defined as

Ji = −Di∇Ci − µi ezi Ci∇�. (1)

Here, Di is the diffusion constant and µi is the mobility of the ion type i , ε is the dielectric
constant of water and e is the electron charge. We use the Einstein relation Di (r) = µi kBT (r)
to relate the position dependence of the diffusion constant to that of temperature. It is also
customary to define the so-called Bjerrum length �B = e2/(εkBT ).

3. Thermophoretic forces

For a fixed CPM, the steady state means that water cannot flow in its channels, which requires
that the water pressures on the two sides of the membrane are equal. Consequently, the
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Figure 2. Various contributions to the force per unit area of the CPM as a function of the salt
concentration. The total force (solid curve) is composed of two contributions corresponding to
the osmotic stress (dash–dotted curves) and the electric force (dashed curve). The total force
changes sign upon increasing the salt concentration, as a result of the competition between the
two contributions. Here, C∗ = 1/(8π�Bλ2

GC) and we have assumed λGC = 6 nm, CPM thickness
d = 9 nm and the Bjerrum length �B = 0.7 nm.

membrane will experience two major forces, namely, the electric force and the osmotic force,
the origins of which are discussed below.

3.1. The electric force

A fixed CPM in a temperature gradient feels an electric force as a result of migration of mostly
oppositely charged ions from the colder to the hotter region. Since most of the migrated ions
have a charge opposite to that of the membrane, they attract the membrane towards themselves,
which means towards the hotter region.

A simple example helps us to understand this better. Imagine an infinitely thin membrane
in a salt free solution, i.e. the only existing ions are negatively charged monovalent counterions.
In the uniform temperature case, the counterion density is (see the inset of figure 3)

C(x) = 1

2π�B

1

(|x | + λGC)2
, (2)

where λGC = 1/(π�Bσ) is the so-called Gouy–Chapmann length. Now imagine that the right-
hand side temperature is increased to T+ and the left-hand side temperature is decreased to T−.
As the density close to the membrane surfaces C(0) = 1/2π�Bλ2

GC = πe2σ 2/2εkBT depends
inversely on the temperature, it increases in the colder side and decreases in the hotter one as
compared to the equilibrium value. Since an infinitely thin permeable membrane cannot bear
two different densities on its opposite sides, there will be a migration of counterions from left
to right. For a temperature profile that varies continuously a similar migration is expected to
occur, leading to an excess of counterions in the hotter region as compared to the colder one,
which in turn produces an electric field of E0 = kB∇T/e at the CPM position, which pushes
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Figure 3. The electric field at the centre in units of its no-salt value E0 = kB∇T/e is plotted as
a function of λDH/λGC, a measure of the salt density. Inset: the counterion density profile for the
no-salt case. When the temperatures of the two separate regions change, densities in the vicinity
of the CPM change as well (dashed curves). To obtain the steady state, some of the ions should go
from the higher density region (i.e. the colder side) to the lower density region (i.e. the hotter side).

it to the hotter region. Considering a finite thickness for the membrane does not affect the
situation too much—it only introduces a correction factor for the electric field that is between
1 and 2.

Addition of salt, however, can have a drastic effect. The presence of salt weakens the
electric field at the CPM, as can be seen from figure 3 where the electric field is plotted as a
function of the ratio between the Debye–Hückel length λDH = 1/

√
8π�BCSalt and the Gouy–

Chapmann length. In the limit of salt saturation, the field is reduced by a factor proportional to
λDH/λGC, which is the ratio between the electric field decay length or the double-layer width in
the salty regime and its value in the no-salt case. In other words, for each of these two limiting
cases the number of migrating ions is proportional to the width of the double layer in that case.
We note that the fact that an excess of oppositely charged ions, in the hotter region, attracts
colloidal particle was also pointed out by Morozov in his numerical work on thermophoresis
of spherical colloids [9].

3.2. The osmotic force

The other important force comes from the difference of the osmotic pressures exerted on
the two sides of the membrane. To evaluate the osmotic pressures, we can use the ideal
gas equation of state [8]. Then, for each type of ion the difference in pressure will
have two contributions coming from the differences in the densities and the temperatures,
i.e. �	 = ∑

i kBT (0)�Ci +
∑

i kB�T Ci (0), in the first order. For a permeable membrane with
zero thickness all the �Ci s and �T are zero in the steady state. As we increase the membrane
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thickness, however, the channels connecting two sides to each other maintain differences in the
concentration and temperature. Solving for the profiles of the ions, we find that the density in
the hotter side is smaller than that of the colder side, which means that the term

∑
i kBT (0)�Ci

tends to push the CPM to the hotter region. The second term
∑

i kB�T Ci (0), however, has the
opposite tendency and tends to push the CPM to the colder region. It is interesting to note that
the second term always dominates the first one in the high salt concentrations, as can be seen
from figure 2. It can be shown that the first contribution

∑
i kBT (0)�Ci asymptotes to a fixed

value as the salt concentration is increased, while the second term
∑

i kB�T Ci(0) increases
with salt content indefinitely.

In the no-salt regime, the magnitudes of the two osmotic contributions are nearly equal
and the total osmotic force becomes much weaker than the electric force. Since the electric
force dominates, the CPM feels a net force towards the hotter region in this case. Addition of
salt, however, changes the situation, as in a characteristic salt concentration the osmotic force
dominates and the membrane feels a net force towards the colder region. The crossover salt
concentration is given by C � C∗, which corresponds to λDH � λGC.

4. Concluding remarks

To complete the discussion and calculate the thermophoretic velocity of the CPM, we should
balance the net force induced by the gradient of temperature by the friction. While at small
forces or low velocities this could be easily achieved by considering a constant friction
coefficient caused by the viscous drag of the membrane itself, the contribution due to the drag
of the comoving counterions may complicate matters at higher velocities [10]. We expect,
however, that this effect will not change the overall tendency of the CPM to move towards the
colder or the hotter regions.

The above treatment has been within the mean-field scheme, and the effect of ionic
correlations fluctuations has been neglected. Including the fluctuations can be shown to result
in an additional force, whose magnitude per unit area goes like −kB∇T/a2, where a is a
cut-off representing the smallest length scale in the system [11], which can be identified as
λGC in the no-salt case and λDH in the high salt one. In both of these limits, the correction
term is negligible with respect to the other forces described above, so we can safely ignore the
correlations.

One may question the validity of the form of the current as given in equation (1),
in the case of nonuniform temperature. To address this question one can begin with the
Langevin equation for the ions and try to derive the corresponding Fokker–Planck equation
for nonuniform temperature. One can show that the form of the current will be modified as
J = −D∇C − µezC∇� − αC∇D, although the choice of α is ambiguous. In fact, α can be
related to the thermodiffusion coefficient of the ions. Carrying out the calculations as before
yields similar forms for the electric and osmotic forces, except that they are both multiplied
by 1 − α.

Finally, in our treatment we have neglected the temperature dependence of the dielectric
constant of water, which should be taken into consideration for a full understanding of the
problem. This effect, together with other extensions of the present scheme, will be addressed
elsewhere.

In conclusion, we have presented an analysis of the motion of a charged permeable
membrane due to the gradient of temperature. In this one-particle model, we have provided
a clear picture of the phenomenon of sign change for the thermodiffusion coefficient by
identifying two competing contributions to the force, coming from charge migration and
osmosis.
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